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Abstract

Feature Extraction algorithms, which
identify prominent events of a sensor signal trace,
have been developed by the NASA Lewis Research
Center. Feature Extraction algorithms are used to
automate the data review process used to assess the
condition of propulsion systems. These algorithms
have been encoded and their versatility has been
demonstrated on Space Shuttle Main Engine and
Atlas/Centaur pneumatic and electrical subsystem
data. Detailed logic and developmental issues for
each of the primary Feature Extraction algorithms
are given. These algorithms detect peaks, drifts,
spikes, level shifts, erratic and noisy behavior, limit
exceedances, and signal start bias.

¢ 1. Introduction

The Post Test Diagnostic System (PTDS)
was developed to reduce analysis time and to
increase accuracy and repeatability of rocket engine
test fire data analysis by automatically retrieving
data, extracting predefined events and analyzing
these events based on heuristics provided by expert
analysts."** In order to fully process the data, an
event based analysis (i.e., analysis based on features
within a single signal or set of signals) was
incorporated.

Feature extraction routines are a critical part
of the PTDS analysis process since they provide the
mechanism which fully reduces the data to specific
events. These events are further processed using
heuristic, model, and cased-based reasoning

techniques to determine the condition of the system.*’

The feature extraction routines have been designed
to be modular so that they can be easily applied to
various vehicle subsystems.

The feature extraction module, developed
for the PTDS, contains algorithms which can be
separated into two categorics. The first category,

called primary algorithms, analyzes data from single
sensors, while the second category analyzes data
from multiple sensor sets. The second category
routines are typically combinations of the primary
algorithms and are often very specific to the system
being analyzed. The focus of this paper will be on
the algorithms which fall into the first category,
primary feature extraction algorithms: peaks, drifts,
spikes, level shifts, limit exceedances, erratic and
noisy behavior, and signal start biases.

The paper will discuss the implementation
issues for feature extraction, describe each of the
algorithms and their purpose, and discuss feature
extraction development and application issues as they
pertain to data from the Space Shuttle Main Engine
(SSME) and from General Dynamics Centaur
pneumatic and electrical subsystems.

II. Implementation of Feature Extraction Algorithms

Rocket engine data analysts perform the
same basic- analysis steps regardless of the
system.* The analysts identify events contained
within a sensor trace and apply their system
knowledge to understand the meaning of these
events. The PTDS and the feature extraction
algorithms were designed to facilitate the automation
of this data analysis procedure. In addition, the
design methodology separates all system dependent
variables from algorithm  logic to facilitate
application to different systems.

The routines are written in *C’ and the code
is implemented such that algorithm dependent
parameters can be changed without code
modifications.® In limited cases, the algorithms can
be used from within the CLIPS expert system shell
via the CLIPS command line

A commands table, which is a file or a
database table, contains features to be extracted from
indicated parameters, over a given time period, using



scveral different feature attributes.  All of this
information is application specific, and will change
from system to system. The feature attributes
include both statistical and parameter or systcm
based limits, such as historical based means and
standard deviations for signal start bias, and
hardware based redline limits for limit exceedance.

In addition to the information contained in

the command file and the database, the algorithms
require time stamped data. Output from the
algorithms include the test descriptor, the sensor
name, feature start and end times and a measure of
the feature’s magnitude. Other feature characteristics
are included whenever they are needed to further
define the feature. OQutput is made to either a set of
relational database tables, or to an ASCII flat file.

ITI. Feature Extraction Algorithms Description

The feature algorithms are described below.
Each of these algorithms has been successfully
applied to Launch Vehicle data. Proper setting of
the feature attributes is critical to the correct
identification of the features. These attributes can
vary greatly depending on the system being
monitored. Some features can be detected with
more than one algorithm, all algorithms that have
been implemented are discussed.

For the drift and the slope based level shift
and peak algorithms the data can be smoothed in
order to reduce random variations and improve
detection quality. The feature attributes for these
algorithms contain a smoothing variable, which sets
the smooth window size. A value of one prevents
smoothing. The smoothing algorithm replaces each
data point with the average of the data points
contained within the smooth window, which is
centered about the point.

The drift, y-intercept based level shift and
noisy behavior algorithms use either averaged data
or standard deviations which are calculated over
defined time segments during data loading. The
defined segments are typically twenty-five to fifty
data points wide. The average and standard
deviation of the data represent the signal’s behavior
during the data segment,

The nomenclature for the features is
arbitrary, but does indicate the general characteristics
of the desired event. Figures 1 through 8 provide
visual illustrations of each feature type found in
either SSME or Centaur pneumatic or electrical
system data.

Level Shifts

Level shifts are significant rapid changes in
average sensor magnitude where the average values
before and after the event remain constant for a
predefined time. Level shifts can be detected with
one of two algorithms, depending on the nature of
the data. The first algorithm is based on changes in
y-intercept and should be used over data intervals
where the data variation is smaii compared to the
overall data range. The second algorithm is based
on changes in slope and can be used on data where
the data variation relative to the overall data range
is large. The level shift algorithm based on
monitoring the y-intercept requires a minimum
amplitude attribute. The slope based algorithm also
needs attribute values for slope standard deviation
and sensor signal standard deviation, the number of
points per line fit and the smoothing window size.
An example of two consecutive level shifts is shown
in Figure 1.
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Figure 1: Example of consecutive level shifts.

The y-intercept based algorithm divides the
signal into non-overlapping intervals and performs a
first order fit over each interval. The average and
three standard deviation values for the y-intercept
terms are then calculated for use in level shift
detection. A level shift is indicated when the y-
intercept deviates significantly from the average of
the y-intercept terms. The level shift amplitude is
calculated from the difference in the predicted values
at the beginning and end of the level shift. This
amplitude is then tested against the minimum
amplitude to determine if a level shift should be



declared.

The second algorithm also breaks the signal
into non-overlapping intervals and performs a least
squares line fit over each smoothed interval. The
slopes of each line segment are then tested against
three times a slope standard deviation attribute to
find places of exceedance. The first occurrence of
an exceedance determines the beginning of a period
of interest. The algorithm then monitors the slope
to determine when the interval of interest has ended.
This occurs when the slope has returned to a
statistical zero. Once this interval has been defined,
the amplitude of the level shift is calculated from
the difference of the predicted values at the interval
stop and start times. If this amplitude is greater
than three times the standard deviation of the
smoothed signal, a level shift is declared. The
standard deviation attribute is based on historical
nominal data.

Peaks

The purpose of the peak feature extraction
routine is to detect areas of significant positive or
negative data excursions where: the starting and
ending data magnitudes are reasonably equal, the
duration of the excursion is within a user defined
time interval, and the magnitude is greater than a
predefined height. Figure 2 shows a peak.
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Figure 2: Example of peak feature.

Peaks may be detected using either of two
algorithms. The first algorithm uses attributes for
minimum height and minimum width. This

algorithm computes slopes using averaged data. The
slope is computed from the sensor’s amplitude and
corresponding time stamp values over the window
bring considered. Results  from the slope
computations are monitored for significant non-zero
values. Once a significant slope is detected the
onset time is recorded and the slope is monitored
for a change in sign. When the slope changes sign,
the peak has reached its maximum height, which is
computed from the difference in signal values at the
peak onset and peak height times. Monitoring of
the slope continues until it returns to a near-zero
state where the peak end time is noted. If the peak
duration, end time - onset time, is less than the
predefined minimum width, the peak is rejected. In
addition, peaks which are less than the minimum
height are also rejected.

After a peak area has been established, the
signal during that interval is fitted using either a
Gaussian model or "fast rise- with exponential fall
off" model to calculate additional peak characteristic
values, such as the times where the peak is at half
height and the corresponding magnitudes. This
information, as well as the peak magnitude, the time
of maximum magnitude, and the peak start and end
times are then recorded in a database table or output
file. ’

The second peak algorithm is computed
concurrently with the slope based level shift
algorithm previously described, and therefore uses
the same attributes of slope. and sensor signal
standard deviations, the number of points per line fit
and smoothing window size. In addition, the slope
based peak algorithm uses a standard deviation
multiplier attribute., In this algorithm, smoothed data
values are divided into intervals whose size is -
defined by the number of points per line fit
attribute. A first order curve fit is performed in
each interval to determine the slope. An interval of
interest is indicated by significant deviations in the
slope from zero. An interval which has similar
starting and ending magnitudes is a candidate for a
peak. The peak height is then calculated as the
difference between the maximum and minimum data
points present during the peak interval. The height
is checked against a minimum value which is the
product of the signal standard deviation attribute and
the multiplier attribute.  The peak is rejected
whenever the height is below the calculated
minimum.

Drifts
The purpose of the drift feature extraction

algorithm is to detect positive or negative linear
trends in sensor data. This algorithm requires the



definition of minimum and maximum slope
attributes. A drift is shown in Figure 3.
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Figure 3: Example of drift feature.

The drift algorithm uses smoothed data that
is recursively subdivided into periods of linear
behavior. This is accomplished by adjusting the
data within the interval under consideration so that
both endpoints are equal to zero. The maximum
magnitude within the interval is then checked to
determine if it is greater than four times the average
standard deviation of the signal. A magnitude
greater than four average standard deviations
indicates that the interval can be subdivided further.
Once the periods of linear behavior have been
determined, the sensor’s amplitude and
comresponding time stamp values at the endpoints of
each period are used to calculate an average slope.
This slope is checked against the minimum and
maximum slope attributes. Slopes greater than the
first threshold indicate the sensor is drifting. Slopes
greater than the second threshold are rejected so as
to minimize overlap with features detected by the
level shift algorithm.

Spikes

The spike feature extraction routines
determine if sensor data exhibits singular large
excursions within a short time span. The spike
algorithm uses attributes for maximum width,
minimum height, and a standard deviation multiplier.
An example of a spike is shown in Figure 4.
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Figure 4: Example of a spike feature.

The spike algorithm divides the data into
windows of approximately equal length. These
windows can be overlapped so that spikes can be
found even when they occur at the edges of sample
windows. The data within each window is fit with
first and second order polynomials. Chi-square
statistics are calculated for each curve fit to obtain
a measurement of the goodness of each fit. - The
chi-squared values are compared and the better of
the two curve fits is selected. The actual data
values are then compared to the chosen curve fit
and a standard deviation is calculated for the
residuals. The deltas between a current point and
the three previous points in the interval are
compared to either the standard deviation of the
residuals multiplied by the standard deviation
multiplier attribute or the minimum height attribute,
whichever is greater. The minimum spike height is
usually defined in terms of a multiplier times the
least significant bit of the analog-to-digital level. A
spike is identified when the delta is greater than the
selected threshold and the spike duration is less than
a user defined spike width. v

Erratic Behavior

The erratic behavior routine detects slow
time varying data. This algorithm requires the
setting of the expected standard deviation attribute
and its multiplier. An example of this feature is
shown in Figure 5.
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Figure 5: Example of erratic behavior feature.

A first and second order fit of the test data is made
and the better of the two fits is chosen based on the
chi-square statistic. The standard deviation of the
residuals from the selected fit is then calculated.
This standard deviation is compared to a minimum
threshold which is the product of the expected
standard deviation and its multiplizr attribute. The
sensor is declared erratic when the standard
deviation is greater than the calculatcd minimum
threshold.

Noisy Behavior

This algorithm is used to detect sensors
which are exhibiting larger than expected signal
variations. Noisy behavior is usually indicative of
an instrumentation problem. The modifiable
attribute for Noisy Behavior is the maximum
allowable standard deviation. An example of noisy
behavior can be seen in Figure 6.

The noise feature extraction algorithm uses
the standard deviation values which are calculated
over small time segments for each sensor upon data
loading. A comparison of each standard deviation

" is made against the maximum allowable standard

deviation. The maximum limit is typically based on
historical data from nominal sensors. The sensor
is declared noisy when a - calculated standard
deviation is greater than the predefined limit.

Limit Exceedance

The limit exceedance routine checks sensor
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Figure 6: Example of noisy behavior feature.

data over specified time intervals to determine if
they exceed upper and/or lower limits. These limits
include reasonableness limits for sensor qualification
and redline checks based on hardware considerations.
Modifiable attributes are minimum exceedance
duration time and the upper and lower limits. An
example of this feature is shown in Figure 7 where
the redline limit for the SSME parameter ‘was
exceeded at approximately 770 seconds.
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Figure 7: Example of limit exceedance feature. For
this example, an SSME parameter
exceeded its redline.



An exceedance is detected by performing a
point-by-point comparison of the sensor data to the
applicable limit. The duration of the limit
exceedance is compared to the user defined
minimum and the exceedance is rejected when the
duration is less than the minimum.

Signal Start Bias

The purpose of the signal start bias routine
is to determine whether a sensor is within acceptable
limits just prior to system start. User modifiable
attributes are the minimum and maximum average
values for a sensor during pre-start. Figure 8 shows
a typical start bias for an SSME actuator position
and a suspect low start bias for the current test.
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Figure 8: Example of start signal bias feature.
Typical start level for an actuator is
zero, for this test start level was low.

Each sensor is averaged over a short time
interval just prior to system start. The time interval
must be kept large enough to obtain a statistically
meaningful average value but small enough to
climinate data responding to scheduled system
events. The average is compared against the
maximum and minimum Lmits. The sensor is
declared out of tolerance when it is not within the
range defined by these limits. Typically, these
limits are defined as the maximum and minimum
averages of the sensor on previous tests where the
sensor was not declared faulty by. the expert
analysts.

IV. Feature Exitraction Aleorithm Development and
Application Issues

In developing the feature extraction
algorithms, two major areas need to be addressed.
These are accurate identification of features and
minimum computation time. The latter is mostly an
encoding and platform issue while the former
impacts the logic used. Additionally, there are
several application issues which impact the accurate
identification of features: transformation of features
from the visual to numerical domain, data variation
and threshold determination, and flexibility.

Data Transformation

Transformation of features from a visual
domain to a numerical domain requires that an exact
definition of the feature be known as well as all
limits associated with the feature. These metrics
are application and expert dependent. In order to
judge a feature and its importance to the system
diagnosis, an expert uses his or her knowledge about
the system and the data. The knowledge about the
data is usually acquired through the detailed and
repeated study of multiple data plots. These plots
are typically presented by using a y-scale which has
been automatically scaled to accommodate all of the
data within the data set. Therefore, the knowledge
that experts have of features existing within the data
has been biased by the y-axis range encountered in
their experience base. The feature extraction
algorithms must be able to account for this bias in
order to comectly identify the features. For
example, Figure 9 shows an SSME parameter which
contains a drift at approximately 450 seconds. Due
to the scale on the y-axis, the drift appears to have
an 18 degree inclination. However, mathematically,
the inclination is actually only 2 degrees. In order
to correctly account for the y-range bias effect, the
data and thresholds are normalized.

Finally, feedback between the expert and
knowledge engineer is critical in order to map
features identified by the expert to the feature
extraction algorithms. For example, the spike seen
in Figure 4 is commonly referred to as a glitch’ by
Centaur electrical system analysts. Another example
is shown in Figure 10. This figure shows a Centaur
pneumatic parameter which contains several level
shift features found within the boxed portion of the
signal. To the Centaur expert all of the features in
Figure 10 are classified as level shifts, even though
the longer duration level shifts could possibly be
classified as drifts. While both examples show that
either algorithm can be extended to detect features
with similar attributes, ultimately it is the knowledge
engineer’s task to ensure the routines correctly
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Figure 9: SSME parameter containing ‘a drift feature, where the visual slope angle is 18° and

the mathematical slope angle is 2°

identify the features the analyst needs.
Data_Variation

Another feature extraction issue is the
ability to handle and correctly extract events from
various data which cover a wide range of behavior.
For instance, an application may require the entire
range of the sensor be used. Such an example can
be seen in Figures 10 and 11 which show signals
with high vadability. In Figure 10, the Centaur
pneumatic system parameter shown has an overall
range which is large compared to the range of the
features which need to be detected between seven
thousand and eleven thousand seconds. Figure 11
shows an SSME parameter, which exhibits a large
range and a level shift prior to 100 seconds.

There are two ways to accommodate
features that are small with respect to the overall
range of a parameter. The first is to break down
the data into smaller intervals which are nominally
stationary. SSME data are preprocessed into periods
where the commanded thrust level of the engine is
constant. The test firing shown in Figure 11
contains eight levels of constant thrust, denoted by
the numbers 1 through 8, which are centered over
each period. The separation of the data into
periods of constant thrust mimics the way the data
analysts partition data during their post firing review.

The second option is to change the method

of determining the feature. For example, level shifts
can be determined by using either a y-intercept
method or a slope method. Both of these routines
use “similar logic, but, each monitors a different
coefficient from the linear curve fit. The y-intercept
method is better suited for those applications where
the data range is small, and the slope method is
better for data with a large range.

Algorithm Flexibility

The feature extraction algorithms have been
developed to be easily applied to time stamped data
generated by any type of system.  In order to
accomplish this, the algorithms accommodate system
dependent changes in the analysis by explicitly
setting the feature attributes. These attributes are

. defined either in the commands table or in the 'C’

code. Changes made to the commands table do not
require recompiling the feature extraction code.
Where attribute changes require recompilation, the
feature extraction logic has been developed to be
insensitive to these changes. This is accomplished
by separating all. of the feature attributes into *C’
header files where changes to the code can be made
without modifying the algorithm logic. This also
allows the developer to easily find and maintain
changes to the feature extraction application.

Some of the feature attributes require
defining acceptable confidence intervals. Typically
these thresholds are generated based on statistics
from several past nominal data sets. This requires



4000

3000 o 7
level shift features

2000 . N

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (sec)

1
-
—_
—
1

1000
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Figure 11: SSME parameter with a large overall range, which has been broken into periods
of constant thrust denoted by the numbers 1 through 8.
“Automating post test and flight operations
is directly impacted by the accurate and fast review
a sufficient database of nominal data and the of enormous amounts of data. An easily adaptable
processing of this data. However, thresholds can Post Test Diagnostic System has been developed to
also be set initially based on expert advice. automate the data analysis process. The process of
’ data analysis is similar regardless of the system
V. Summary being analyzed.  This basic concept is being

demonstrated by the development and application of



generic PTDS modules to a variety of vehicle
subsystems.

Feature Extraction is critical to the data
review process and the Post Test Diagnostic System.
The primary Feature Extraction algorithms identify
peaks, drifts, spikes, level shifts, noisy behavior,
limit exceedance and signal start bias. These
algorithms have been encoded using *C’ which can
be embedded within any diagnostic system. The
code developed for these algorithms has been
designed to easily accommodate changes from
different systems. This has been accomplished by
separating all feature attributes and thresholds into
cither a commands table or *C’ header files.

There are several developmental issues

which have been addressed. In many cases, the °

burden lies upon the knowledge engineer to correctly
map features identified by the expert to the feature
extraction algorithms. This task is directly
influenced by. transformation issues between visual
and numerical representatxons data_variation, and
data preprocessing requirements.

The Feature Extraction algorithms have been
designed to transfer easily across applications.
Examples have been given to demonstrate the ability
of the Feature Extraction algorithms to successfully
identify events within data taken from the Space
Shuttle Main Engine and the Atlas/Centaur
pneumatic and electrical subsystems.
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